2 [40 points] Support Vector Machines

1. [4 points] Suppose we are using a linear SVM (i.e., no kernel), with some large C value,
and are given the following data set.

Draw the decision boundary of linear SVM. Give a brief explanation.

Solution. Because of the large C value, the decision boundary will classify all of
the examples correctly. Furthermore, among separators that classify the examples
correctly, it will have the largest margin (distance to closest point).



2. [8 points] In the following image, circle the points such that after removing that point
(example) from the training set and retraining SVM, we would get a different decision
boundary than training on the full sample.

You do not need to provide a formal proof, but give a one or two sentence explanation.

Solution. These examples are the support vectors; all of the other examples are
such that their corresponding constraints are not tight in the optimization problem, so
removing them will not create a solution with smaller objective function value (norm
of w). These three examples are positioned such that zemoving any one of them
introduces slack in raints, allowing for a solution with a smaller objective
value and with a different third support vector; in this case, because each of
these new (replacement) support vectors is not close to the old separator, the decision
boundary shifts to make its distance to that example equal to the others.




3. [8 points] Suppose instead of SVM, we use IW(I logistic regression to learn the

classifier. That is, = -
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In the following image, circle the points such that after removing that point (example)
from the training set and running regularized logistic regression, we would get a dif-
ferent decision boundary than training with regularized logistic regression on the full
sample.
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You do not need to provide a formal proof, but give a one or two sentence explanation.

Solution. Because of the regularization, the weights will not diverge to infinity, and
thus the probabilities at the solution are not at 0 and 1. Because of this, every example
contributes to the loss function, and thus has an influence on the solution.



4. [8 points| Suppose we have a kernel K (-, -), such that there is an implicit high-dimensional
feature map ¢ : R — RP that satisfies Vz;,z; € RY, K(z;,2;) = ¢(z;) - ¢(x;), where
o(x;) - pla;) = S22, d(x;)'é(x;) is the dot product in the D-dimensional space, and
#(z;)! is the I*® element/feature in the D-dimensional space.

Show how to calculate the Euclidean distance in the D-dimensional space

lp(:) — J > (#(@:) — olz;))?

without explicitly calculating the values in the D-dimensional space. For this question,
please provide-: 1 proof. [T \C( g
Hint: Try converting the Euclidean distance into a set of inner products.

Solution.

Ip(:) — ¢(z5)|| = \l > (d(@:) — plzs))?
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5. [6 points] Assume that we use the RBF kernel function K(z;, z;) = exp(—3|lz; — z;]|%)-

Also assume the same notation as in the last question. Prove that for any two input
examples z; and z;, the squared Euclidean distance of their corresponding points in
the high-dimensional space R” is less than 2, i.e., prove that ||@¢(z;) — ¢(z;)||* < 2.

Solution. This inequality directly follows from the result from the last question.



6. [6 points| Assume that we use the RBF kernel function, and the same notation as
before. Consider running One Nearest Neighbor with Euclidean distance in both the
input space R? and the high-dimensional space RP. Is it possible that One Nearest
Neighbor classifier achieves better classification performance in the high-dimensional
space than in the original input space? Why?

Solution. No.
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